631 research outputs found

    The release of the prothoracicotropic hormone in the tobacco hornworm, Manduca sexta, is controlled intrinsically by juvenile hormone

    Get PDF
    Pupal development is elicited early in the last larval instar of the tobacco hornworm, Manduca sexta (Johannson), by a precise temporal and quantitative increase in the haemolymph titre of 20-hydroxyecdysone. This increase in the titre is referred to as the pupal commitment peak, and it occurs once the titre of juvenile hormone (JH) has dropped. If the haemolymph titre of JH remains elevated at this time due to topical application of the hormone or of its analogue ZR512, commitment is delayed or inhibited in a dose-dependent manner. This delay or inhibition is due to the curtailment of the commitment peak in the ecdysteroid titre, which results from a failure of the prothoracic glands (PG) to increase the synthesis/secretion of the premoulting hormone, ecdysone. Since the PG from ZR512- and JH 1-treated larvae are capable of being activated in vitro by the prothoracicotropic hormone (PTTH), the effect of JH on the PG does not involve suppression of gland sensitivity to PTTH. The locus of the JH effect was determined to be the brain-retrocerebral complexes (Br-CC-CA), on the basis of experiments which tested the effect of implanted Br-CC-CA from pre-commitment larvae treated with JH on the occurrence of pupal commitment in head-ligated larval hosts. The implanted, JH-treated Br-CC-CA exhibited a delayed release of PTTH, and the effect was at concentrations of JH that were physiological. These results argue that JH functions to control the time during the last larval instar when pupal commitment occurs by dictating when PTTH will undergo gated release

    Heterogeneous Task Scheduling for Accelerated OpenMP

    Full text link
    Abstract not provide

    A comparative study of high-performance computing on the cloud

    Full text link
    Abstract not provide

    Young Stars and Protostellar Cores near NGC 2023

    Get PDF
    We investigate the young (proto)stellar population in NGC 2023 and the L 1630 molecular cloud bordering the HII region IC 434, using Spitzer IRAC and MIPS archive data, JCMT SCUBA imaging and spectroscopy as well as targeted BIMA observations of one of the Class 0 protostars, NGC 2023 MM1. We have performed photometry of all IRAC and MIPS images, and used color-color diagrams to identify and classify all young stars seen within a 22'x26' field along the boundary between IC 434 and L 1630. For some stars, which have sufficient optical, IR, and/or sub-millimeter data we have also used the online SED fitting tool for a large 2D archive of axisymmetric radiative transfer models to perform more detailed modeling of the observed SEDs. We identify 5 sub-millimeter cores in our 850 and 450 micron SCUBA images, two of which have embedded class 0 or I protostars. Observations with BIMA are used to refine the position and characteristics of the Class 0 source NGC 2023 MM 1. These observations show that it is embedded in a very cold cloud core, which is strongly enhanced in NH2D. We find that HD 37903 is the most massive member of a cluster with 20 -- 30 PMS stars. We also find smaller groups of PMS stars formed from the Horsehead nebula and another elephant trunk structure to the north of the Horsehead. We refine the spectral classification of HD 37903 to B2 Ve. Our study shows that the expansion of the IC 434 HII region has triggered star formation in some of the dense elephant trunk structures and compressed gas inside the L 1630 molecular cloud. This pre-shock region is seen as a sub-millimeter ridge in which stars have already formed. The cluster associated with NGC 2023 is very young, and has a large fraction of Class I sources.Comment: 21 pages, 11 figures. Accepted for publication in A&A Replaced with higher resolution figure

    A Study of the Residual 39Ar Content in Argon from Underground Sources

    Full text link
    The discovery of argon from underground sources with significantly less 39Ar than atmospheric argon was an important step in the development of direct-detection dark matter experiments using argon as the active target. We report on the design and operation of a low background detector with a single phase liquid argon target that was built to study the 39Ar content of the underground argon. Underground argon from the Kinder Morgan CO2 plant in Cortez, Colorado was determined to have less than 0.65% of the 39Ar activity in atmospheric argon.Comment: 21 pages, 10 figure
    • …
    corecore